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ABSTRACT 

Like all astrometric instruments, the Space Interferometry Mission (SIM) suffers from field-dependent 
errors requiring calibration. Diffraction effects in the delay line, polarization rotations on comer cubes, and 
beam walk across imperfect optics, all contribute to field-distortion that is significantly larger than is 
acceptable. The bulk of the systematic error is linear across the field - that is, it results in a magnification 
error. We show that the linear terms are inconsequential to the performance of SIM because they are 
inseparable from baseline length and orientation errors. One approach to calibrating the higher-order terms 
is to perform ‘external’ calibration; that is, SIM periodically makes differential measurements of a field of 
bright stars whose positions are not precisely known. We describe the requirements and constraints on the 
external calibration process and lay the groundwork for a specific procedure detailed in accompanying 
papers. 

Keywords: Space Interferometry Mission, SUI, interferometry, calibration 

1. INTRODUCTION 

The Space Interferometry Mission (SIM) is under development in preparation for launch in 2010. The 
mission’s goals are to perform global astrometry of several thousand sources with a precision of - 5 micro- 
arcseconds (uas), and narrow angle (relative) astrometry with a precision of 1 uas. These goals place 
challenging requirements on the accuracy of SIM’s interferometric optical path measurements; for global 
astrometry, the instrument makes optical path measurements with an accuracy of c 1  nm over a range of 2.6 
m, while in narrow angle mode, the requirement is 5 times smaller over a range of 17 cm 111. The dynamic 
range of the astrometric calibration is likely to be smaller than that of the HST Fine Guidance Sensor 
(FGS). The FGS performs 0.5 milli-arcsec (mas) astrometry in the presence of 0.5 arcsec systematic errors 
(dynamic range = 1000) 121. SIM on the other hand, will calibrate - 50 nm errors to a precision of 0.5 nm 
(dynamic range = 100). 

The optical path measurements determine the distance that the starlight travels once it enters the 
interferometer. The path is measured with a laser beam that is aligned to be parallel to the starlight 
collected by the interferometer. By definition, the starlight enters the interferometer when the (nominally) 
planar wave front passes the vertices of the two corner cubes that define the endpoints of the science 
baseline. 

There are many ways that systematic errors cause a false reading of both the metrology and starlight paths 
as the light propagates from the corner cube planes to the beam combiner. For example, corner cube 
dihedral errors bias the metrology beam measurement, an effect that depends on the incidence angle of the 
beam. Beam walk across imperfect optics, caused by slight lateral translations of the delay line or thermal 
deformations of the structure, results in differential path delays between the starlight and the metrology 
beam. Polarization, diffraction, aberrations, and other effects are also present. As discussed below and by 
Sievers et a1 [3], these effects introduce 10’s of nm of systematic optical path errors over the wide-angle 
field, and a few nm over the narrow-angle field. Sievers et a1 also demonstrate that the linear component of 
these errors is inconsequential in wide-angle measurements because they are absorbed by the process of 
global grid reduction 141. They may also be inconsequential in narrow-angle measurements, but this 
depends on how the reference frame and grid stars are used to extract the high-precision information. 

* Contact information: Jet Propulsion Laboratory, 4800 Oak Grove Dr., MS 301-486, Pasadena, CA 91 109 



Our goal in this paper is to discuss a method of on-orbit calibration of the systematic optical path 
measurement errors. The calibration error c is expressed as a bias to the delay measurement, 

(1) 
where d is the delay, and vectors s and bare  the directions to the star and along the baseline, 
respectively. The symbol ( ) represents the inner product. Bias term c i s  a 2-dimensional function of 
angle with respect to the baseline, and it has units of distance with a typical magnitude of 10s of nm, as just 
discussed. It is “locked” to the instrument - that is, it exists only because of instrumental measurement 
errors. It evolves with time and is not guaranteed to carry pre-launch characteristics into orbit. 

d = ( s, b) + c( s, b)  , 

We have explored two distinct calibration approaches, called “internal” and “external” calibration. Both 
are discussed in [3]; here we give a detailed overview of the external calibration approach. This general 
non-parametric approach relies on differential delay measurements of a grid of bright (Vc10) stars. From 
the differential measurements, a calibration function is estimated, in much the same way that an adaptive 
optics system uses local tip-tilt measurements to estimate the wave front. In the following section, we 
describe the calibration procedure, the necessary assumptions behind the approach, the properties of the 
derived calibration function, the required integration time and noise propagation, and the application of the 
approach to narrow angle astrometry. The detailed mathematics are left to Papalexandris et a1 in a separate 
manuscript [ 5 ] .  In Sect. 3, we demonstrate that the calibration function is mainly linear in field, but we do 
not address the issue of high-frequency (l/f - I wavelength) calibration errors; these are forced to be small 
through the SIM error budget, and they are being addressed by the technology development program [6] .  
In Sect. 4, we introduce hybrid calibration approaches that combine the strengths of internal and external 
calibration 

2. EXTERNAL CALIBRATION PROCEDURE 
The precise positions of the stars are not known at the beginning of the mission. Given a catalog error 
of 8 s  , the delay measurement is in error by (as, b) . Assuming 6s =2 mas and b =10 m, the delay error 
is 100 nm, a few times larger than the uncalibrated instrument bias. Clearly it is not possible to estimate 
c from raw measurements of stars without a catalog that is accurate to a few uas. 

However, if one uses SIM to make differential measurements by changing the baseline by an amount 
ab while observing a set of stars, then the differential calibration function can be determined as long as is 
ab reasonably well known. Assume the interferometer is canted by +6b for one measurement and -Sb 
for another. The differential delay is given by 

Sd = ( s ,b  + Sb) + (s,b - Sb) + c(s,b + Sb) - c(s ,b  - Sb) 
(2) 

= ( s ,2Sb)+c(s ,b+Sb)-c(s ,b-Sb)  

We want to estimate the c terms across the field-of-regard (FOR) from the difference of the two c terms on 
the right side of eq. 2. We will first describe the calibration procedure, then return to eq. 2 to estimate the 
error due to our imperfect knowledge of Sb and ds . 

Let’s choose a set of stars that spans the SIM FOR. From our understanding of the physics of the 
interferometer (e.g. Kuan et a1 [7]) we may need just a few stars because c does not have large high-order 
terms. But to remain more general, and to potentially handle higher order effects due for example to delay 
line misalignments, we choose a 10x10 or larger grid to cover the circular 15” FOR. To keep integration 
times reasonable, the stars should all be brighter than V=10. For stars this bright, the delay measurement 
noise standard deviation is 0,=140 pm after a 15 s integration. There are plenty of stars available, as 
shown in fig. 1. 



Figure 1. At left, a random field of Vel0 stars assuming an average of 8 stars per 
square degree (mean value for the sky [SI). At right, a 16 x 16 grid selecting the 
stars that are closest to a uniform grid. 

We make 4 measurements of the quasi-regular grid in fig. 1. Defining the baseline to lie on the u-axis, the 
center of the FOR to be in the z-direction, and the v-axis as z x u, we roll the interferometer about the u-axis 
by k6b and cant it by the same amount about the v-axis. The geometry is shown is figure 2.  

At each of the 4 baseline positions, SIM measures the entire NxN grid, just as it measures a 'tile' in wide- 
angle mode. The delay measurements are made in the normal observing mode - therefore they calibrate 
the instrument in its normal observational state, and they do so without a secondary calibration. A similar 
process is used with great success to calibrate the HST FGS [ 2 ] .  While adaptive optics provides a closer 
mathematical analogy to the SIM external calibration approach, the wave front sensor (e.g. a Shack- 
Hartman array) contributes a static error due to lenslet imperfections, pixel positions, etc. The sensor 
calibration (usually performed on a stellar target or internal point source) is critical to performing high- 
accuracy wave front retrieval. There is no analogous auxiliary sensor used with external calibration. 

2.1 Integration time 
The time to perform these measurements is computed from the integration time per star and the overhead in 
setting up each observation. We will integrate on each star for 15 seconds, and conservatively assume 30 
seconds of overhead to slew the delay line and acquire a new star. For a grid with 10 stars across the 
diameter, the total time per baseline orientation is -1 hr, leading to - 4 hours spent performing the 
Calibration. The overhead for calibration may be smaller than the general case because the stars are 
separated by only 1-1.5 degrees; if the overhead is reduced to 15 s, the total integration time is 2.7 hr. 

The amount of time available for calibration is limited to at most 10% of the mission. If the external 
calibration procedure is to be applied, this places a stability requirement of 1-2 days on the systematic delay 
error. Many of the key contributors to the systematic error are bound to remain stable for this period of 
time. Polarization effects related to coatings, and diffraction effects due to clipped apertures are expected 
to be stable for weeks to months. But other sources of error, particularly those related to thermally driven 
structural deformations, are more problematic. In Sect. 4 introduce a hybrid approach that updates the 
changes in c while relying on external calibration for the fundamental calibration. 

2.2 Measurement Noise 
As noted above, a 15 s integration on a V=10 star yields ad =140 pm of shot noise. In addition to this 

noise, the SIM error budget carries 0,- 200 pm of random noise per measurement associated with 
metrology, thermal drifts, and other effects. The total noise per measurement is then the root-sum-square 
of the two terms, - 250 pm. We thus carry 250 pm of noise per delay measurement through our 
simulations. 



Our process determines a non- 
parametric solution to the calibration 
function. The solution is anchored at 
the measured grid points. Thus, without 
placing smoothness constraints on the 
solution, we expect the 250 pm to 
represent the approximate noise floor 
for the calibration process. 

To reduce the noise below this level 
(required for narrow angle calibration 
but not for wide angle calibration), one 
may invoke measurement 'chopping,' 
currently the standard narrow-angle 
measurement scenario. Chopping 
implies that we measure for a short 
period of time (say 15 s) on the target, 
then move to a reference source in the 
field, then return to the target and repeat 
N times. The measurement pairs are 
differenced to filter long-term drifts 
(e.g. thermal), reducing linear drift 

*** 
* *T** 

Figure 2. Baseline geometry. The baseline is defined to lie 
along the u-axis. The FOR is centered on the z-axis. 
External calibration is performed by rolling the baseline 
about the u-axis and canting it about the v-axis. 

contributions by N , and improving by ./N random measurement noise. This technique is being 
demonstrated in the SIM technology program [9]. The final error per measurement will be commensurate 
with the narrow angle budget, - 40 pdmeasurement. This will, of course, increase the integration time per 
star to - 5 minutes, rendering it impractical for large (e.g. 10x10) grids. 

2.3 Bootstrapping 
SIM is a high-quality astrometric instrument even without astrometric calibration. Its intrinsic - 50 nm 
calibration errors allow it to make 1-2 mas measurements of a field of stars without calibration. We take 
advantage of this by performing an initial measurement of the positions of the external calibration grid stars 
before beginning the calibration procedure. 

A single-tile measurement that does not invoke the wide-angle grid will not get the absolute scale and 
rotation of the grid stars to better than a part in 106 because on-board absolute metrology measures the 10 m 
baseline length with an accuracy of - 10 um. This limitation does not affect calibration (see Sect. 3), but it 
should be noted that while we are discussing 1-2 mas astrometry of a single tile in the initial calibration 
bootstrap, we are ignoring the scale and orientation of the calibration grid. 

Before any measurements or calibration are performed, the 10 x 10 grid is known to - 20 mas (e.g. by 
ground-based astrometry). After an initial measurement by SIM, the catalog is updated to 2 mas precision. 
The updated catalog allows SIM to extract calibration results from eq. 2 with an acceptable error. The error 
in eq. 2 due to 6s  =2 mas, assuming a f 1' baseline cant is given by (ds, 26b) but 6s is tangent to the 

unit sphere (it contains only (u, v) components) while 6b is a cant about the v-axis, thus it contains 
primarily a z component. Thus (6s, 26b) << 1 nm. Note that 6b =O for roll about the u-axis. The initial 
uncalibrated star measurement improved the catalog positions to the point that catalog noise is 
commensurate with other noise sources. The initial cantho11 procedure is then able to estimate the 
calibration function with a standard deviation of 0,=500 pm over the FOR. The remaining sources of 
noise are shot noise, systematic noise, discretization, and interpolation errors. 

Another term that degrades the calibration process is the limited knowledge of S b .  The guide 
interferometers are uncalibrated at the start of the mission, limiting our knowledge of cant and roll to 6b - 



2 mas. This leads to an error that is bounded by a cubic term in (db, + db,) whose amplitude is - 1 nm 
at the edge of the field given the typical calibration errors discussed above [ 5 ] .  

Once an initial tile measurement and an initial calibration measurement are obtained, SIM begins the wide- 
angle grid-reduction process. The wide-angle grid reduction improves the catalog to 8s =lo0 uas after the 
first full-sky measurement. At that point, catalog noise is well below the other noise sources. The 
calibration grid can then be measured with an accuracy limited only by the nature of the calibration 
function itself (its smoothness and stability), in concert with the granularity and frequency of calibration 
grid measurements. 

2.4 Properties of the External Calibration Function 
2.4.1 Smoothness 
To successfully derive a calibration function from the differential measurements of eq. 2, the calibration 
function is expected to be smooth and stable. The temporal stability was discussed in sect. 2.1. The 
smoothness criterion is related to the coarseness of the grid and the size of the baseline cant. First, any 
calibration function is acceptable as long as the difference between it and the estimated one is less than the 
measurement noise, that is 

IJc - Ellm 5 e, (3) 

where 11 11 represents the maximum norm. Now the estimation process has both discretization and 

interpolation errors. From [5 ] ,  the discretization error is the error due to the existence of high-order 
derivatives when we make a simple centered differential estimate of a C /  au from two points. The 
discretization error in pddegree is then insensitive to the second derivative and follows 

m 

+high order terms h2 a3c 
6 au3 e =-- (4) 

(and similar for the v derivative), where h is the grid spacing. To maintain this error below the 
measurement noise, consider 250 pm of measurement noise at h=1° grid spacing. This yields a slope error 
of 250 pddegree and places a limit on the third derivative 
of 1500 pdcubic degree. 

An interpolation error arises between grid points. For 
simple linear interpolation of our derived estimates of c at 
the grid points, the interpolation error is given by h 

Figure 3. Geometry for calculation of 

hAu a2c 
ei =-- ( 5 )  

The geometry is shown in fig. 3 .  AU is the distance from a 
grid point and h is the grid spacing. To maintain ei <250 pm, with h=l", the second derivative should obey 

a2c / au2 < lo00 pdsq .  degree. 

2.4.2 Generality 
Smoothness of c as expressed by its 2"d and higher order derivatives affects the accuracy of the estimate. 
Importantly this is all we demand of c. Its origin is of no consequence to our ability to determine it, except 
that the physics of its origin affects its smoothness. The calibration function can be caused by the 
superposition of any number of effects, and there is no requirement that the superposition be linear. The 
calibration function can take the general form 



and the external calibration function will measure it to within the SIM requirements as long as eqs. 4 and 5 
are obeyed and the function is stable -10 times longer than is required to perform the calibration procedure. 
For example, the existence of aberrations in the starlight and metrology beams adds to, and potentially 
couples with, lateral beam walk across imperfect optics. As long as the effects are smooth with field angle, 
the fractional contributions of each, and any higher order terms related to the product of the individual 
terms, are rolled into c(u,v). This is in contrast to the proposed internal calibration procedure [ 3 ] ;  for 
internal calibration, the superposition must be linear ( m, n I 1 ). Our physical models, however, all 
indicate that the superposition is in fact linear to a few picometers; we fully expect that non-linearities will 
not limit the accuracy of internal calibration. 

The Hipparcos telescope employed a similar ‘external calibration’ philosophy to perform on-orbit 
calibration [lo]. The analysis approach used a great-circle reduction to solve for the relationship between 
on-sky and on-detector directions. They used a simple optical model to account for behavior that could be 
explained by geometrical effects related to structural deformations, and they found “evidence that certain 
components of the transformation cannot be explained by such structural variations.” Thus they were able 
to model drifts of several milli-arcseconds per year in the instrument while they maintained a model with 
enough degrees-of-freedom to remove instrument drifts from the astrometric data. This was accomplished 
using astrometric data collected during the normal course of observation. While this may not be practical 
for SIM due to the long (> 1 week) period between grid reductions, the end-to-end observation approach 
combined with a simple model strongly parallels the Hipparcos calibration approach. 

3. LINEAR TERMS AND THE CALIBRATION FUNCTION 
The SIM flight system is described by Kahn and Aaron [ 13. The currently adopted value for the SIM field- 
of-regard is a 15” diameter circle. Stars are selected by tilting the SIM siderostats over a +/- 3.75” angle, 
and moving the delay line +/- 1.3m. Corner cubes are attached to the siderostats to retroreflect laser 
metrology beams that double-pass the delay lines. Now as the corner cubes rotate, the changing incidence 
angle causes a change in the reflected Stokes parameters that introduces a phase shift on the metrology 
beam. Since the incidence angle is nominally 20-30 degrees on the comer cube surfaces, and they are 
rotating by 3.75”, the phase change is mostly linear with field angle. A similar argument can be made for 
dihedral errors (imperfect corner cube right-angles), as well as the offset distance between the corner cube 
and the siderostat. Likewise, the metrology and starlight beams propagate - 15 m between the siderostats 
and the beam combiner. Diffraction effects that evolve over the 15 m path will have a large linear change 
component as the delay line is slewed 1.3 m. Our models (e.g. [7]) show that the bulk of the systematic 
calibration error is linear in field. 

We now explore the implication of the linear terms on the astrometric performance of SIM. SIM makes 
differential angle measurements within the FOR. The measured delay is given by eq. 1 and the coordinate 
system is shown in fig. 2. The baseline is known to within an error Sb such that the difference between 
the true baseline b and the estimated one bo is given by 

b =bo + ( S b ,  ,Sb,,Sb,) 

so that the error one makes in estimating the delay, assuming c=c, = constant is 

(7) 

Sd = d - do =< s, Sb >= uSb, + vSb, + 41 - u2 - v2 Sb, + co , (8) 

with ( u , v , d m b e i n g  the position of a star. When many stars are observed in a tile (that is 

within the 15” FOR) without resetting the baseline, then eq. 8 forms a matrix dd = Ax where the columns 
of A are the star positions and parameters p are the baseline error 3-vector and the constant term. When 
many tiles are processed to form a full-sky reduction, then the star positions are written as si = Soi + SS, 
and the Ssi are added to the matrix. This is the basis of the SIM global grid reduction [4]. 

Now consider the calibration function parameterized as a sum of linear functions and higher order terms, 



c = c, + au + p v  + c,(u,v) . (9) 

(10) 
and it is clear that the linear calibration terms are inseparable from the baseline length and orientation 
terms. The global grid solution will find a solution to 

(1 1) 
and likewise for the v component. The linear terms do not add any new parameters to the grid solution, and 
they do not affect the noise propagation or other characteristics of the solution. They are absorbed by the 
solution, in much the same way that plate-scale and rotation terms are absorbed in relative astrometry at 
conventional telescopes [ 1 1,121. 

Substituting this into eq. 2 and expressing the baseline as in eq. 7, we re-write the delay error as 

Sd = u(Sb,, + a) + v(Sb, + p) + J-Sbz + c, 

Sb, ' = Sb, +a 

The implication of this result is that most of the -50 nm of error in the uncalibrated instrument has no 
adverse effect on the performance of SIM. The linear terms are of no interest to the calibration process. 
Returning to the adaptive optics example, we are essentially saying that the sensor does not need to 
estimate the global tip, tilt, and focus. Below we give two examples illustrating the significance of the 
result 

3.1 Lateral beam walk 
Beam walk is a major contributor to the overall SIM error budget, and a significant source of beam walk is 
attributed to alignment of the delay line rails relative to the metrology beam. SIM carries a beam walk 
coefficient of 1.6 pmhm assuming lambda/l25 r.m.s. optical surfaces. The error grows as the square root 
of the number of surfaces. Thus, with N-20 arms per surface, each arm of the interferometer picks up - 7 
pm of optical path error per micron of lateral motion. This implies a tight - 10 um alignment of the delay 
line rails relative to the beam direction. The beam walk error is dominated by spatial frequencies roughly 
0.25 - 1 cycle across the metrology beam, or about 0.5 - 2 cm /cycle. Higher frequency errors are 
averaged by the spatial extent of the beam, while lower frequency errors are common to both starlight and 
metrology beams. 

The beam walk error caused by any lateral motion of the optic is dominated by a term proportional to the 
beam walk as long as the lateral motion is small compared to the beam diameter, e.g. for a 100 um motion, 
the beam walk optical path error is mainly the local slope of the 0.5 - 2 cm spatial periods. Thus, for small 
(< I mm) lateral motions caused by misalignment of the delay line rails, the optical path error is a linear 
function of delay and is therefore proportional to field coordinate u.  

This is borne out by simulation. Norbert Sigrist [13] simulated optics having lambdd100 (at 633 nm) r.m.s. 
surfaces obeying a power spectral density law f2.5. He calculated the average optical path for a metrology 
beam having a 5 mm diameter at the l/e2 intensity point and plotted the path as a function of lateral beam 
translation over a 1 mm range (figure 3a). The experiment was repeated 100 times to obtain a meaningful 
statistical description of the resulting slope sensitivity. He then subtracted the linear terms from each curve 
and replotted the residuals (figure 3b). While the linear terms had a range of 12 nm (one would expect - 16 
nm given the 1.6 pm/micron sensitivity figure), the residuals have amplitudes < 1 nm and an r.m.s. of 100 
pm. They are clearly dominated by quadratic terms. When the same simulation was run for a total range of 
200 nm, the r.m.s. residual was 4 pm, or about 25 times smaller than the 1 mm result (as expected for a 
quadratic error). 

Takmg the result for a 200 um misalignment and multiplying by f i  to account for the number of optics 
in the full SIM optical train, one finds that the total non-linear contribution to the SIM error budget 
assuming straight, misaligned rails is < 20 pm r.m.s. This misalignment figure should be trivial to achieve, 
as it is - 200 urad or 40 arcsec, well within the accuracy of standard theodolites and well within the 
alignment capabilities for pre- and post-launch integration and test. Should it prove to be non-trivial, even 
an 80 pm error resulting from a 400 urad misalignment is probably acceptable. 



3.2 Corner cube polarization and dihedral errors 
Metrology beams suffer 
phase delays when they 
encounter dielectric or 
metallic surfaces such as the 
gold coating on the SIM 
corner cubes. The phase 
delays are dominated by 
linear terms, as 
demonstrated by figure 4. 
For a racetrack beam 
configuration, with the 
metrology beam nominally 
10 degrees from the ( l , l , l )  
vector, the r.m.s. optical path 
error is 2.7 nm as the gold- 
coated cube is articulated 
over a circular range of 7.5 
degrees. After subtracting 
linear terms, the r.m.s. 
optical path error is 400 pm 
(Fig. 4b). 

Dihedral errors likewise 
cause largely linear errors, as 
shown in figure 5. Given a 
corner cube with a 1 
arcsecond (surface) dihedral 
error, observed at a distance 
of 10 m with a beam 
nominally incident at 10 
degrees from the (1,1,1) 
vector, the r.m.s. path error 
is 4.4 nm as the cube is 
articulated over a +/- 3.75 
degree circle. Figure 5b 
shows the residual after 
removing terms linear in u 
and v. The residual optical 
path error is 100 pm r.m.s., a 
factor of 43 reduction 
compared to the linear terms. 

If our polarization and 
dihedral models represent 
the true behavior of the SIM 
comer cubes and metrology 
beams, then only a factor of 
3-5 calibration is required to 
bring the r.m.s. motion to 
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Figure 3. Optical path error resulting from translation of 
a metrology beam (We2 diameter 5 mm) across a 
lambdd100 surface having an f2.5 power law. (a) shows 
the optical path error for a 1 mm translation. (b) shows 
the resulting optical path error after subtracting linear 
terms. The r.m.s. motion for the curves in (b) is -100 pm. 

acceptable levels. Roughly speaking, the r.m.s. optical path error will be 2-3 times the single-beam value 
for polarization and dihedral errors once one has accounted for external metrology geometry and the 
number of beams. Given the 1-arcsec corner cubes and angular conditions described above, the r.m.s. error 
is - 1 nm over the SIM field-of-regard after removal of linear optical path terms. Thus, a calibration good 
to 25% will reduce these errors to < 250 pm. 
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Figure 4. Optical path error resulting from polarization phase shift at a corner cube. A racetrack 
beam is assumed to hit 3 surfaces in sequence. The beam is nominally 10 degrees from the cube’s 
(1,l’l) vector. (a) shows the raw effect, while (b) shows the residual after removing terms linear in 
u and v. Figures provided by Gary Kuan. 
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Figure 5. Optical path error resulting from an uncalibrated dihedral error of 1 arcsec on a single 
face of the corner cube. A racetrack beam is assumed to hit 3 surfaces in sequence. The beam is 
nominally 10 degrees from the cube’s (1’1,l) vector and 10 m from the cube. (a) shows the raw 
effect, while (b) shows the residual after removing terms linear in u and v. Figures and simulations 
provided by Gary Kuan. 

4. HYBRID APPROACHES 
The external calibration procedure defined in sect. 2 is a general 
procedure that works well for functions that are have higher-order 
behavior than our physical models would indicate (e.g. figs 4 and 
5). Let’s now assume that the physical models are correct in the 
sense that they describe the smoothness and independence of the 
calibration function even if they aren’t a perfect picometer-for- 
picometer match to the instrument. That being the case, the 
polarization and dihedral errors are adequately described by 
general second-order polynomials, while the beam walk and 
diffraction terms are separable functions of the delay line position 
only - that is, they depend on the u-coordinate and are independent 
of v. We can then select a much smaller set of stars to perform the 
calibration, while maintaining a general solution in u added to a 
polynomial across the field. Figure 6 shows the selection of 
calibration stars to match our model of the calibration function. 

********** 
********** 
********** 
********** 
********** 

V 

U 

Figure 6. Selection of stars for 
reduced parameter fit. 



The 50 stars are more densely spaced in u with double-spacing in v. This particular set allowed us to utilize 
our external calibration code to produce an estimated calibration function. However, a set of stars with 
only one row of dense u-sampling would work well too. 

We used the following procedure to estimate the calibration function and force our result to obey the 
physical model: 

Perform cantho11 procedure for the 50 stars as described in sect. 2. 
Use the differential delay measurements to form an estimate ? as described in ref. 3. 
Fit a second order polynomial to ? , i.e. 

From the residual R(u, v) = ?(u,v) - ~ ( u ,  v) , average the residual over v so that 
c2(u,v) =au+bv+cuv+du2 +ev2  (12) 

N u )  = ( W u ,  VI), (13) 
Estimate the calibration function from the combined polynomial and residuals 

True c(u.v) w/o linear terms. r m s .  = 2.0413 nm Poly fit to true c r.m.s. = 0.1942mn -- - .  

w 

0.2 

Fit to true c, r.m.s. = 0.2866nm 

Figure 7. Plot at upper right shows the 
improved estimate of c under the assumption 
of 2nd order polynomial c(u,v) and higher order 
term R(u). 

The example includes 250 pm shot noise per 
point, 2 mas star position errors. The 
simulation is consistent with a 1.4 hour on- 

o,2 orbit calibration exercise. 

v (radian) -0.2 u (radian) 

c(u,v) = c,(u,v) + R(u) (14) 
This function is a second order polynomial in (u,v) plus a general function (e.g. piecewise continuous spline 
with 10 sections) independent of v. Figure 7 shows simulation results for this process. Starting with a 
model-based calibration function [3], we first derive an estimate ?shown at lower left in the figure. At 
upper right we show the final result. The noise level is improved from - 300 pm to 200 pm after fitting the 
polynomial and averaging the residual in v. 

Another version of the hybrid approach is to utilize on-board internal calibration modes to measure 
systematic errors that may change on relatively rapid time scales while relying on external calibration to 
handle the quasi-static terms. For example, the delay line beam walk terms may change as the structure is 
deformed by thermal cycling, while the corner cube polarization terms are likely to degrade slowly over the 
5 year mission. To apply an internal calibration (i.e. putting the interferometer in retro-reflecting mode and 
using an on-board laser to measure delay line diffraction and beam walk effects), the calibration function 



would be estimated at time e t , ,  as above. Also at time t=t,, the internal function Z(u,t,) is measured. At a 
later time, the internal function is updated, and the new calibration function becomes 
c(u,v,~,) + Z(U, t )  - Z(U,~,) . This will correctly update the calibration function as long as changes in I 

follow changes in c. This is being explored in the SIM testbed program [9]. 

5. CONCLUSION 
The generality of the external calibration solution has important implications for pre-and post launch 
testing. As discussed in detail in sect. 2.4, the calibration function must be smooth (eqs. 4 and 5) and 
stable. Thus, the goals of the external-calibration pre-launch test and modeling program are to demonstrate 
the smoothness and stability of the calibration function. This is in contrast to the internal calibration test 
program; there the goals are to discriminate the separate terms of the calibration function (e.g. polarization, 
diffraction, etc.) and apply them to the on-orbit internal calibration over the course of the mission. The 
two approaches are complimentary in that external calibration gives little insight into the nature of the 
calibration function, because it is general-purpose. It is slow (it takes hours to complete a calibration) and 
noisy (250 pm of noise per measurement). Internal calibration on the other hand, forces us to understand 
exactly how SIM works and places substantial additional requirements on the test program. 

The hybrid approaches suggested in sect. 4 provide a compromise. Where the calibration function is 
smooth and stable, then external calibration is an effective means of deriving c. When the calibration 
function changes on short time and spatial scales, internal calibration can be used to update the changes. 

This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under 
contract with the National Aeronautics and Space Administration. 
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